人工智能也有歧視和偏見

公司

06-13 13:17

在大多數科幻電影里,冷漠又殘酷是 AI 的典型形象,它們從來不會考慮什么是人情世故,既沒有人性光輝的閃耀,也沒有人性墮落的七宗罪。

然而在現實中,人工智能技術卻不像電影里那么沒有「人性」,不過這可不是什么好事,因為 AI 的「歧視」和「偏見」正在成為越來越多人研究的課題,而且它們確實存在。

我們先來看幾個例子:

COMPAS 是一種在美國廣泛使用的算法,通過預測罪犯再次犯罪的可能性來指導判刑,而這個算法或許是最臭名昭著的人工智能偏見。根據美國新聞機構 ProPublica 在 2016 年 5 月的報道,COMPAS 算法存在明顯的「偏見」。根據分析, 該系統預測的黑人被告再次犯罪的風險要遠遠高于白人,甚至達到了后者的兩倍。

▲ 圖片來自:Medium

可能你在直覺中也會認識黑人的再犯率會高于白人,但這并不和實際情況相符。在算法看來,黑人的預測風險要高于實際風險,比如兩年內沒有再犯的黑人被錯誤的歸類為高風險的幾率是白人的兩倍(45% 對 23%)。

而未來兩年內再次犯罪的白人被錯誤認為是低風險的概率同樣是黑人再犯將近兩倍(48% 對 28%)。

人工智能的偏見,早已深入了各個領域。

在 AI 技術應用領域,面部識別也是一項廣泛使用的應用類型,并且這會成為種族和性別偏見的另一個潛在來源。2018 年 2 月份麻省理工學院的 Joy Buolamwini 發現,IBM、微軟和中國公司 Megvii 的三個最新的性別識別 AI 可以在 99% 的情況下準確從照片中識別一個人的性別,但這僅限于白人。對于女性黑人來說,這個準確率會降至 35%。

▲ 圖片來自:FPT University

一個最可能的解釋是,AI 的「偏見」取決于背后訓練算法訓練的數據,如果用于訓練的數據里白人男性比黑人女性更多,那顯然白人男性的識別率就會更高。IBM 后來宣布他們已經采用了新的數據集并重新訓練,微軟也表示會采取措施提高準確性。

另一個研究是 Facebook 的人工智能實驗室的研究成果,他們發現人工智能的偏見不止存在于國家內部,在不同國家之間也是存在的。

比如當被要求識別來自低收入國家的物品時,Google、微軟和亞馬遜這些人工智能領域大佬的物體識別算法會表現更差。

研究人員對五種流行的物體識別算法進行了測試,包括 Microsoft Azure,Clarifai、Google Cloud Vision、Amazon Rekogition 和 IBM Watson。

測試的數據集包含了 117 個類別,從鞋子到肥皂到沙發以及更是各樣的物品,這些來自于不同的家庭和地理位置。跨域了從布隆迪(非洲中東部的一個小國家)一個 27 美元月收入的貧窮家庭,到來自烏克蘭月收入達到 10090 美元的富裕家庭。

研究人員發現,與月收入超過 3500 美元的家庭相比,當被要求識別月收入 50 美元的家庭時,物體識別算法的誤差率大約會增加 10%,在準確性的絕對差異上甚至會更大。與索馬里和布基納法索相比,算法識別來自美國產品是準確率要提升 15-20% 左右。

▲ 圖片來自:Startup Thailand

這就是問題所在。目前的人工智能背后需要即為大量的數據去訓練,盡管人工智能本身不知道「歧視」和「偏見」是什么意思,但背后數據的研究人員卻會帶有這樣的思想,以至于在訓練數據的選擇上就會產生偏向性。

通常情況下,在創建 AI 算法的過程中會有許多工程師參與,而這些工程師通常來自高收入國家的白人家庭,他們的認知也是基于此階級,他們教導 AI 認識世界也是如此。

當然這并不是全部原因,在 2015 年的一項研究中顯示,使用 Google 搜索「CEO」的圖片,其中只有 11% 的人是女性。我知道男性 CEO 的確比女性 CEO 比例要多很多,但實際上美國有 27% 的 CEO 是女性。而匹茲堡卡內基梅隆大學的 Anupam Datta 領導的另一項研究發現,Google 的在線廣告系統展示的男性高收入工作也比女性多很多。

Google 對此的解釋是,廣告客戶可以制定他們的廣告只向某些用戶或網站展示,Google 也確實允許客戶根據用戶性別定位他們的廣告。

另一大巨頭亞馬遜也曾遇到過 AI 歧視的問題。2014 年的時候亞馬遜在愛丁堡成立了一個工程團隊以尋求一種自動化的招聘方式。他們創建了 500 種計算機模型,通過對過去的入職員工簡歷進行搜索,然后得出大約 50000 個關鍵詞。

「當時他們在這個算法上寄予了很大期望,喂給它 100 份簡歷,然后它會自動吐出前五名,OK,我們就雇傭這些人。」當時一位消息人士是這樣告訴的路透社。

▲ 圖片來自:Machine Learning Techub

然而一年后,工程師們有一些不安的發現——它不喜歡女性。顯然這是因為人工智能所獲取過去十年的數據幾乎都是男性的,因此它得出了「男性更可靠」的觀點,并降低了簡歷里包含女性字樣簡歷的權重。

性別偏見還不是這套算法唯一的問題,它還吐出了不合格的求職者。2017 年,亞馬遜放棄了該項目。

盡管人工智能的「偏見」已經成為一個普遍的問題,但有意思的是,人類又試圖使用人工智能技術去糾正人類本身的偏見問題。

日前舊金山宣布推出一種「偏見緩解工具」,該工具使用人工智能技術自動編輯警方報告中的嫌疑人種族等信息。它的目的是在決定某人被指控犯罪時,讓檢察官不受種族偏見的影響。目前該工具已經準備就緒,預計在 7 月 1 日正式實施。

▲ 圖片來自:Seattletimes

根據舊金山地區檢察官辦公室的說法, 這個工具不僅會刪除關于種族的描述,同時還會進一步刪除關于眼睛顏色和頭發顏色等可能有意無意對檢察官造成暗示的信息,甚至地點和社區名稱也將會被刪除。

它會運作良好并產生實際的效果嗎,目前還不得而知。

某種意義上說,目前人工智能的「歧視」與「偏見」是人類意識以及階級地位的投射。白人精英工程師研究出的人工智能更像「白人的人工智能」和「精英的人工智能」,同理也可以想象,如果是黑人和黃種人主導的人工智能,同樣也會對本群體比較有利。

▲ 圖片來自:Dudu Mimran

而通過人工智能對人類本身的偏見行為進行糾錯則是一項更有意思的嘗試,如果該方法確實能緩解人類的偏見,那人類和人工智能可能會在該問題上相互收益,理想情況下能打造一個正向循環。

神話故事里上帝摧毀了巴別塔使得人類不再語言文化互通,而人工智能這一改變未來的宏偉技術同樣像是一座通天高塔,如果要把它建成全人類的福祉,消除不同文化造成彼此偏見是一定要解決的問題。

題圖來源:Financial Times

后評論

評論在審核通過后將對所有人可見

正在加載中
www.福利彩票走势图